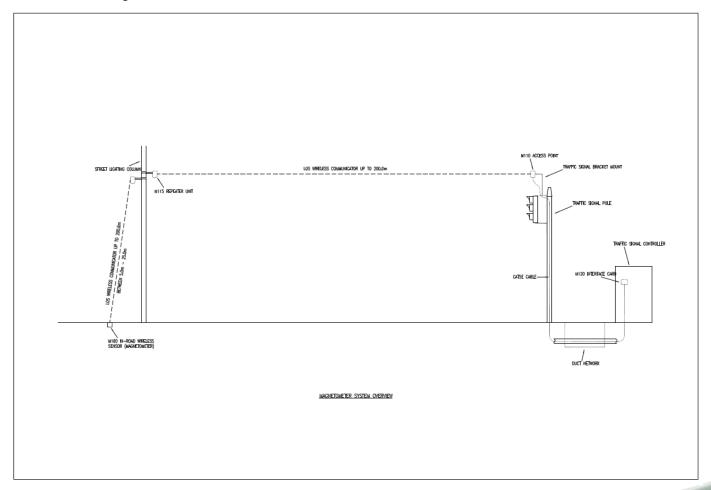
Implementation of and deployment of a large scale programme – Magnetometers

Felicity Luckett
Transport for London

20th September 2013

Contents

- SCOOT Project The background
- Magnetometer System The basics
- Project Structure
- Planning Processes
- Installations
- Lessons Learnt

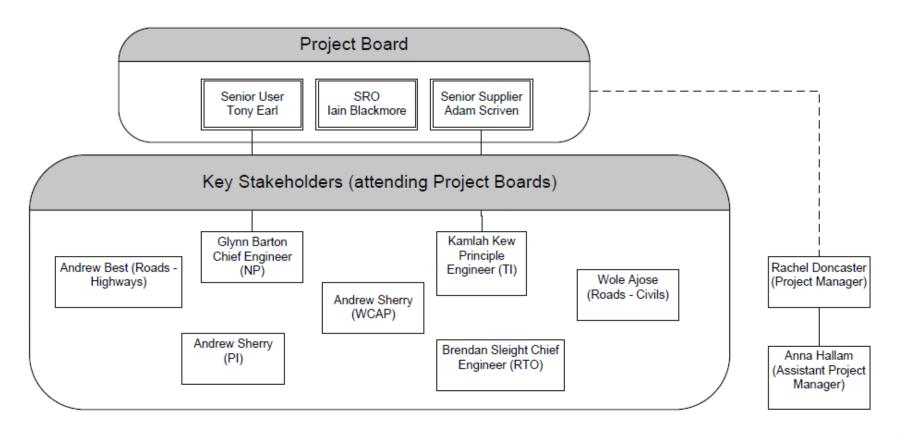

The Project

- Programme milestone of 1000 SCOOT commissionings by end of March 2013
- Ultimate target of benefits reported at 1000 sites by end of 2013
- Reportable to the DfT
- •New SCOOT detection at 115 locations for final year of the New Investment SCOOT Programme
- Olympic delivery workload lead to compressed delivery period

Magnetometers – The Basics

A wireless system of vehicle detection

Magnetometers – Why Use Them?


<u>Cost</u> – whole life-cycle savings of 60% predicted vs inductive loops. Also, TfL's Lane Rental initiative added to the cost of major road works.

<u>Time</u> – minor works permits required as opposed to major permits for duct runs

<u>**Disruption**</u> – post-Olympics many projects were competing for road space, magnetometer installation is low impact.

Project Team Structure

Project Timeline

Y4 2012-13 SCOOT Programme - Next Stage Plan - Key Tasks, Metrics & Milestones

2012-13		Pe	rlod 7	\neg	$\overline{}$	Per	lod 8	_	Т	Per	lod 9			Per	od 10	\neg	Т	Perl	od 11	\neg	-	Perl	od 12		\Box	Perio	od 13	\neg
Wks			3	4	1		3	4	1	2		4	1		3	4	1		3	4	1			4	1			4
TI	╢	-	Manag	ne Co	ntrolle	ro Inc	fallafi	on - 4) total	// ner	wask	1	-				-				-				-		\vdash	\dashv
			4	4	4		4		4		4																	
	-												1															
TCMS	-	-	4	4	trollers 4		treet 4				90K)		Н				-				-						\vdash	\dashv
NP	4	_	Produ			Layor 18		gns –	89 tota	1 (18	perw	ek ha	nded	over t	o TI)		_											_
	+	_	18	18	18	18	1/						╫				+											\neg
P&M									ing Of	fice) -	89 to	tal (18	per w	eek ha	anded	over to	TI)											
	+	-		18	18	18	18	17	-	-		-	Н-	-	-		-	-			-	-			-		\vdash	
TI					Deter	ctor D	etalle	d Desi	gns Co	mplet	e (IMI	R MS1	& MS	2) – 89	total (18 per	week)											
					18	18	18	18	17																			
TCMS	1	-		_	Draw	lna u	n TM	nlana -	- 89 tot	al acr	088.3	TCMS	(13 pe	rwee	k)		-	-										\dashv
10					13	13	13	13	13	13	13		Ĭ		.,													
TOMO			Datast		atalla.	4 0340			10.00	115 -1																		
TCMS	4	-	Detect	3		3	MSS) - nrs	10 01	115 81	8		\vdash	-			-										\vdash	-
TCMS					\blacksquare							9 d (IM		3) - 11 11		- Rema		105 sl	8 8									-
TI & NP	1	_		Sites	Commi	Ission	ed - f	rst 10			10		10	- "	10		10										\vdash	
				1	3	3	3																					
TI & NP	1	-								Sites	Com	missio	ned -	- 115 to	otal - R	emaini	Ina 10	5 altes			-						\vdash	-
											11				11			10	11									
P&M		_		_	\vdash		10 of	tes har	dod o	vor In	to Del		Н.														\vdash	-
Fam							2	4	4	101111	LO F GI																	
													Ш															
P&M	4	-	-						-			Rem:	ining 8		tes hai	nded o	ver Int	to P&M 7	8	7		7	8	7	8		\vdash	-
	+											-	ľ	- '		- 1		-		- '	ľ	,		-	ľ		Н	\neg
	+	-											-				-										\vdash	
date	#																											
1	C	mpiété	d on tim	8									\vdash				+										\vdash	
	A	risk of	late dell	vегу																								
																	4											

Supply Chain

- Supplier appointed in late July
- Periodic meetings held to:

- » Forecast equipment levels "just in time" delivery
- » Agree processes for delivery and return of goods
- » Forum for technical support / feedback

Training

 Basic training in design principles in May; follow up on installation given in October

Design Engineers

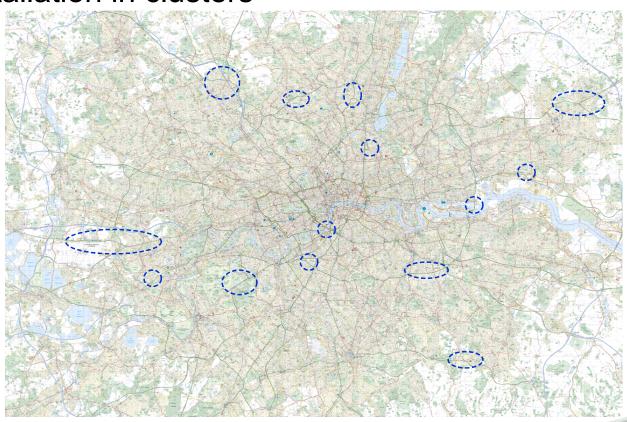
- Traffic Infrastructure
- Network Performance

Installation Engineers

- Traffic Infrastructure
- Signals
 Contractors
 x3

Maintenance Engineers

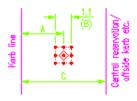
- Maintenance Inspectorate
- Signals
 Contractors
 x3


Preparing for installations

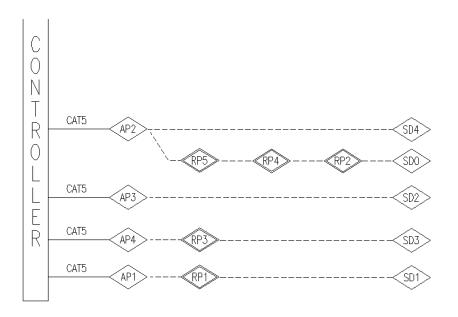
- Draft guidance note on installation prepared and circulated to contractors and internal staff
- Rates of installation agreed with contractors
- Procedure for handover into maintenance devised
- 33 London Boroughs and TfL Street Lighting departments contact and process for permission to mount repeaters agreed

Preparing for installations

Sites packaged geographically and programmed for installation in clusters



Installation


- First sites from programme installed and commissioned in November
- Supplier provided technical support during installation of each contractor's first two sites
- A typical installation took three days:
 - Day 1 & 2 installation of equipment
 - Day 3 configuration

Drawing Details

WAGNETOMET	er's for oil): 07/001		
NUMBER	DISTANCE FROM N/S KERB	DISTANCE TO STOPLINE (METRES)	reference Point	PROPOSED OR EXISTING
SDO	4.0	180.0	N LINE WITH PARTY MALL \$278/280	EXISTING
SD1	2.5	118.0	ADJACENT OF PARTY WALL 38-40	EXISTING
SD2	2.5	132.0	UPSTREAM OF PARTY WALL \$297/259	EXISTING
503	2.5	158.0	N LINE WITH PARTY WALL \$67/88	EXISTING
SD4	3.0	180.0	IN LINE WITH PARTY MALL \$305/308	EXISTING

access point/ repeater	SKSNAL POLE/ LAMP COLUMN	LOCATION
AP1	P4	SWAL POLE 4
AP2	P1	SIGNAL POLE 1
AP3	P1	SIGNAL POLE 1
AP4	P2	SINAL POLE 2
RP1	LC	LQ # 17
RP2	LC	LO\$06199
RP3	LC	rc i to
RP4	LC	LC\$06302
RP5	LC	LQ 06302

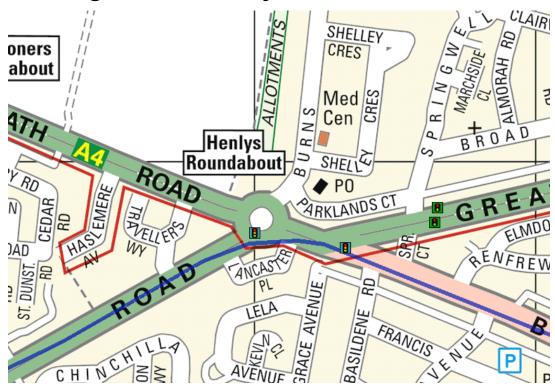
Equipment mounting height


- AP mounted on signal pole ~3.7m above ground
- Repeater mounted 3.5m-4.0m above ground
- 200m range found to be too long in some instances



Cable terminations

Cables direct to card


Signal Strength

- Default sensitivity settings not always appropriate resulted in a series of detectors with intermittent faults
- Currently carrying out analysis of performance of recommended sensitivity settings vs reduced sensitivity

Signal Strength

 High voltage of Piccadilly Line caused disruption to wireless signals at two junctions

Mobile Access Point

Used for:

- Monitoring of sensor activation
- Changing of remote units RF channels
- Taking signal strength measurements
- Scanning for an unknown sensor
- Proving Access Points and interface cards

Lessons Learnt

- Trial process needed to be better specified and with clear outcomes
- Training for maintenance engineers was too generic – it needed to cover the likely faults and difficulties that would arise
- Training given too early too much of a time separation between design training and start of design

Output from the Project

- More accurate cost model for future business cases RSM SCOOT
- Design and installation document
- Revised commissioning procedure to ensure robustness of wireless network
- Fault finding guide to assist maintenance engineers
 - Mobile access point

Questions

